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 ABSTRACT	

The empirical mode decomposition (EMD) method is used to decompose the non-
stationary and nonlinear signal into a finite set of orthogonal non-overlapping time scale 
components that include several intrinsic mode function components and one residual 
component. Elastic net (ELN) regression is a statistical penalized method used to address 
multicollinearity among predictor variables and identify the necessary variables that have 
the most effect on the response variable. This study proposed the use of the ELN method 
based on the EMD algorithm to identify the decomposition components of multivariate 
predictor variables with the most effect on the response variable under multicollinearity 
problems. The results of the numerical experiments and real data confirmed that the EMD-
ELN method is highly capable of identifying the decomposition components with the 
presence or absence of multicollinearity among the components. The proposed method 
also achieved the best estimation and reached the optimal balance between the variance 
and bias. The EMD-ELN method also improved the accuracy of regression modeling 
compared with the traditional regression models.

Keywords: Elastic-net regression, empirical mode decomposition, LASSO, model selection, multicollinearity, 
ridge regression

INTRODUCTION

Regression analysis methods assume 
that the variables have stationary and 
linear properties and that the predictor 
variables are free from multicollinearity to 
achieve reliability and accuracy of results. 
Transformation (modification) methods can 
be used to convert the variables to become 
stationary and linearized; however, these 
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methods can lead to the loss of valuable information and features of the original dataset. 
Moreover, few statistical methods can handle variables selection when multicollinearity 
exists (Hamid et al., 2018; Hashibah & Mahat, 2013).

The empirical mode decomposition (EMD) method focuses on non-stationary and 
nonlinear variables and decomposes the variable into a set of decomposition components 
with different information (Huang, 2014). These components represent new predictor 
variables that can be used to study their effects on the response variable. Unlike traditional 
analysis methods, such as Fourier decomposition (Titchmarsh, 1948) and wavelet 
decomposition (Chui, 1995), the EMD method does not assume that the dataset is either 
stationary or linear.

Multicollinearity is one of the fundamental issues in variables selection. The presence 
of multicollinearity between predictor variables increases variance, highlights the wrong 
sign of coefficients, and misleads the selected model (Jadhav et al., 2014). To address 
this gap, Zou and Hastie (2005) proposed the technical penalized regularization method, 
which is a double shrinkage called elastic net regression (ELN). The ELN method is a 
combination of ridge regression (RR) (Hoerl & Kennard, 1970) and least absolute shrinkage 
and selection operator (LASSO) regression (Tibshirani, 1996). The ELN can achieve the 
best estimation of optimal balance between the variance and bias terms. It can also choose 
between predictors that exhibit a high correlation in the final model.

The EMD method and the penalized regularization regression method analysis have 
been used in several scientific fields to understand the significance of decomposition 
components on the response variable. Examples include the forward stepwise regression 
methods with EMD (Yang et al., 2011), the LASSO regression based on ensemble EMD 
(EEMD) (Shen & Lee, 2012), ridge regression with EEMD (Shen et al., 2012). LASSO 
regression based on EMD (Qin et al., 2016), LASSO regression, deep belief networks 
(DBN) with EEMD (Chu et al., 2018), kernel ridge regression and EMD (Naik et al., 
2018),  and LASSO regression based on noise-assisted multivariate EMD (NA-MEMD) 
(Masselot et al., 2018).

This article is an expansion of the study by Al-Jawarneh et al. (2020) that used the 
EMD-ELN method for univariate original predictor cases. Al-Jawarneh, et al. (2020) 
explored the relationship of the orthogonal decomposition components of the nonlinear 
and non-stationary original predictor with the response variable extracted through the 
EMD method. This article focused on the cases of the multivariate original predictors 
by applying the EMD method based on the ELN regression method. For the multivariate 
case, the effects of the decomposition components extracted through the EMD method of 
the nonlinear and non-stationary original multivariate predictor variables on the response 
variable are investigated. When multicollinearity among the decomposition components 
is determined, the proposed method removes the multicollinearity to arrive at a model free 
from multicollinearity, and to produce more accurate results
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The rest of the paper is organized as follows.  Section 2 describes the EMD algorithm, 
ELN regression, and EMD-ELN algorithm methods. Section 3 discusses and applies the 
method through numerical experiments using stock market data. Section 4 provides the 
conclusions of the study.

METHODS

This section describes the methods used in this study. The first method is the EMD algorithm 
method, which is employed to decompose the original signal (predictor variable) of the 
dataset. The second method is the regularization method by ELN regression. The proposed 
EMD-ELN algorithm is discussed in this section.

Empirical Mode Decomposition 

Empirical mode decomposition (EMD) algorithm was presented by Huang et al. ( 1998). 
The EMD algorithm is a new technique analysis method that aims to decompose the non-
stationary and nonlinear signal into a finite set of orthogonal decomposition components 
called intrinsic mode function (IMF) components. One component called the residual and 
represents the trend of the signal. The principle of the EMD algorithm is that it analyzes 
the original signal through an iterative process called the sifting process, which maintains 
the time domain of the signal (Huang, 2014). These decomposition components represent 
the temporal modes existing in the original signal, which have different physical significant 
meanings.

Each of the orthogonal decomposition components should satisfy the following IMF 
conditions: (1) Over the entire length of a signal, the number of local extrema (E X ) (i.e. 
maximum and minimum) and the number of zero-crossing ( Z ) should be equal or differ 
at most by one ( #𝐸𝑋 − #𝑍 ≤ 1), where this condition indicates that each IMF has only 
one local extrema between two consecutive zero-crossing or vice versa. (2) At any point 
on a signal, the mean envelope (m) value between the upper (U e ) envelope defined by 
the local maximum and the lower (L e ) envelope defined by the local minimum are zero 

(𝑚 = 𝑈𝑒+𝐿𝑒
2

= 0), which explains that all IMF are stationary components (Huang, 2014).

The original signal x ( t )  is the linear combination of the finite set of orthogonal IMF 
components and monotonic residual component through the EMD algorithm as indicated 
in the following Equation 1:                            

𝑥 𝑡 = �𝐶𝑘(t)
𝐾

𝑘=1

+  𝑟(𝑡)�						      [1]

where symbol t represent the sample index (time domain) {𝐶 𝑘(𝑡)}, 𝑘 = 1, 2,…, 𝐾 denotes 
the finite set of IMF components, and r ( t ) is the residual component.
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The iterative process of the EMD algorithm to decompose x ( t )  into orthogonal C k ( t ) 
and r ( t )  components of a non-overlapping time scale are summarized in Algorithm 1 
and Figure 1.

Algorithm 1: EMD algorithm
Input: x ( t )
Output: 𝐶𝑘 𝑡 ;𝑘 = 1,2, … ,𝐾  and r ( t )  components

(1)	 Initializations:  𝑟0 𝑡 = 𝑥(𝑡); 𝑗 = 1 and 𝑘 = 1.
(2)	 Identify all local maximum and a local minimum of x ( t ).
(3)	 Determine the upper U e j ( t )  and lower L e j ( t )  envelopes 

through the cubic spline curve of the local maximum and 
minimum of the x ( t ), respectively.       

(4)	 Compute the mean envelope: 𝑚𝑗(𝑡) =  [𝑈𝑒𝑗(𝑡)  + 𝐿𝑒𝑗(𝑡)� 2⁄ .
(5)	 Compute: ℎ𝑗 𝑡 = 𝑥 𝑡 −𝑚𝑗(𝑡� .
(6)	 Check that ℎ𝑗 𝑡 = 𝑥 𝑡 −𝑚𝑗(𝑡� satisfies the conditions of IMF.

Yes: ℎ𝑗 𝑡 = 𝐶𝑘 𝑡 , save output  and go to the next step 
(7).
No: 𝑗 = 𝑗 + 1 and repeat steps (2)–(6).

(7)	 Compute: 𝑟𝑘 𝑡 = 𝑟𝑘−1 𝑡 − 𝐶𝑘(𝑡).
(8)	 Check that 𝑟𝑘 𝑡 = 𝑟𝑘−1 𝑡 − 𝐶𝑘(𝑡) satisfies the stoppage criterion. 

𝑆𝐷𝑗 = ∑ ℎ𝑗−1 𝑡 − ℎ𝑗 𝑡
2

/ℎ𝑗−12 𝑡𝑇
𝑡=0 ; 0.2 ≤ 𝑆𝐷𝑗 ≤ 0.3    

Yes: Go to the next step (9).
No: 𝑘 = 𝑘 + 1 and repeat steps (2)–(8).

(9)	 Save the output: ∑ 𝐶 𝑘(t)𝐾
𝑘=1 + 𝑟𝑘 𝑡 .

Figure 1. EMD algorithm process

Input
Sifting process

Output
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Elastic Net Regression

Elastic net regression (ELN) was introduced by Zou and Hastie (2005). The ELN is a hybrid 
technology of the penalized least squares regression method that involves regularization 
and variables selection and was developed to improve and overcome the limitations of the 
LASSO regression in some situations (i.e., when the number of observations (n ) is larger 
than the number of predictors (p )  and the predictor variables have a multicollinearity 
problem) (Zou & Hastie, 2005).

Penalized regressions methods, such as the ELN method introduce little increase to 
the bias and contribute to the decrease in the variance by adding penalties to the estimation 
regression, which leads to the treatment of the multicollinearity and the enhancement of the 
accuracy of the selection compared to the other methods, such as the ordinary least square 
(OLS). The ELN is a combination of the two more commonly used penalized regression 
methods: (1) LASSO method, which uses the sum of the absolute values of the coefficient 
variables (l 1 -norm) with the tuning parameter and (2) the RR method, which uses the 
sum of the squared coefficient variables (l 2 -norm) with the tuning parameter (Javaid et 
al., 2020). The practical principles of the ELN method are similar to LASSO and involve 
the shrinkage of the coefficient regression toward zero or should be equal to zero for 
unnecessary predictors, leading to a reduction in the number of predictor variables (Al-
Jawarneh et al., 2020). In a multicollinearity case, the ELN method can remove or select 
the predictor variables that exhibit high correlation in the final model, unlike the LASSO, 
which lacks the tools to deal with multicollinearity.

The model structure of the multiple linear regression with n observations and p 
predictors is derived as Equation 2:                                

𝑦𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯+ 𝑥𝑖𝑝𝛽𝑝 + 𝜀𝑖                         ,

𝑦 = ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=0 + 𝜀 						      [2]

where 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑝,𝛽0 is the intercept, x i j  is the i-th observation of 
the  j-th predictor variable x j , and β j  is the unknown regression coefficient of the j-th 
predictor variable, which represents the average effect on y  of per one unit change in the 
j-th predictor variable x i j ,  while 𝑦 = ∑ 𝑥𝑗𝛽𝑗

𝑝
𝑗=0 + 𝜀 i  is the error term. 

In the penalized regression methods, the predictors and response variables should be 
standardized to have zero mean and unit standard deviation (i.e. centered and normalized) 
before model fitting (Yan & Su, 2009; Zhou, 2013) as Equation 3:     

 𝑦� = 1
𝑛
∑ 𝑦𝑖𝑛
𝑖=1 , 𝑥̅𝑗 = 1

𝑛
∑ 𝑥𝑖𝑗𝑛
𝑖=1 , 𝑆𝑦 = ∑ (𝑦𝑖 − 𝑦�)𝑛

𝑖=1
2 , and 𝑆𝑥𝑗 = ∑ (𝑥𝑖𝑗 − 𝑥𝑗̅)2𝑛

𝑖=1

									         [3]
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Then, the predictors and response variables are standardized as Equation 4:

𝑦𝑖́ = (𝑦𝑖 − 𝑦�)/𝑆𝑦 , and 𝑥𝑖𝑗́ = (𝑥𝑖𝑗 − 𝑥̅𝑗)/𝑆𝑥𝑗			   [4]                                   

The classical OLS estimator is used to estimate the unknown regression coefficients 
by minimizing the residual sum of squares (RSS). The RSS is the sum of the squared 
differences between the actual value and the estimated value and is obtained as Equation 5:𝑦𝑖́ = (𝑦𝑖 − 𝑦�)/𝑆𝑦 , and 𝑥𝑖𝑗́ = (𝑥𝑖𝑗 − 𝑥̅𝑗)/𝑆𝑥𝑗

					     [5]                                                                      

Using Equation 5, the OLS regression for the j-th element 𝜷� (i.e., 𝛽𝑗: 𝑗 = 0,1,2, … ,𝑝) 
(Montgomery et al., 2012) is obtained as Equation 6:

𝑦𝑖́ = (𝑦𝑖 − 𝑦�)/𝑆𝑦 , and 𝑥𝑖𝑗́ = (𝑥𝑖𝑗 − 𝑥̅𝑗)/𝑆𝑥𝑗

			   [6]

The ELN regression method is the penalized version of the OLS estimator and produces 
the coefficients regression 𝜷� (i.e., 𝛽𝑗: 𝑗 = 0,1,2, … ,𝑝) (Zou & Hastie, 2005) given by Equation 7:   

𝑦𝑖́ = (𝑦𝑖 − 𝑦�)/𝑆𝑦 , and 𝑥𝑖𝑗́ = (𝑥𝑖𝑗 − 𝑥̅𝑗)/𝑆𝑥𝑗

									         [7]   

where 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼) and 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼)

 are the tuning parameters 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼)

, which are automatically selected 
by using cross-validation (CV). Another way is to denote 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼) and 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼)
(Haws et al., 2015), Equation 6 is equivalent to Equation 8:

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

									         [8]     

where 𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

 is a regularization parameter 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

 and 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

 is a tuning parameter 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

 ≥ 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

. 
When

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

, the ELN estimation follows the OLS method in Equation 6 while the ELN 
estimation follows RR regression shown in Equation 9 when 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

, but when 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1  the 
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ELN estimation performed using the LASSO regression shown in Equation 10. Thus, 
the RR and LASSO regressions are cases from the ELN regression. Therefore, the ELN 
regression sets the appropriate value for 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1 between zero and one.

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

    	 [9]

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

	 [10]                             

The coordinate descent method and soft-thresholding operator (Friedman et al., 2010) 
are used to solve  Equation 8 with given values of 

𝜆1 𝑎𝑛𝑑 𝜆2   

 (𝜆 1, 𝜆2 > 0)

𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1−𝛼) and 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1. The coordinate descent method 

is used to optimize each predictor separately and solves exactly for one predictor x i j  while 
the rest of the predictors x i f  except the j-th predictor are fixed in each coordinate descent 
step. Equation 7 can be rearranged to isolate β j  (Equation 11):

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

									         [11]       

where 𝑦́𝑖 − 𝛽0 −�𝑥́𝑖𝑓𝛽𝑓

𝑝

𝑓≠𝑗
 𝒓𝑓

𝑋𝑗 = �𝑥́𝑖𝑗𝛽𝑗

𝑛

𝑖=1

 is the partial residual 

𝑦́𝑖 − 𝛽0 −�𝑥́𝑖𝑓𝛽𝑓

𝑝

𝑓≠𝑗
 𝒓𝑓

𝑋𝑗 = �𝑥́𝑖𝑗𝛽𝑗

𝑛

𝑖=1

 that represents the differences between 

the actual and estimated values that does not involve x i j . Let  𝑋𝑗 = �𝑥́𝑖𝑗𝛽𝑗

𝑛

𝑖=1

 , then Equation 

11 can be rearranged as Equation 12:

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

	 [12]                                      

Using the coordinate descent to compute Equation 12, the partial derivative for β j  is 
as Equation 13: 

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

	 [13]

Solving Equation 13 in terms of 𝜷� (i.e., 𝛽𝑗: 𝑗 = 0,1,2, … ,𝑝)j yields the following Equation 14:

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )

𝜷�𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 − ∑ 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑗=1

2
+ 𝜆∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛
∑ 𝑦𝑖́ − 𝛽0 −∑ 𝑥𝑖𝑓́ 𝛽𝑓 − 𝑥𝑖𝑗́ 𝛽𝑗

𝑝
𝑓≠𝑗

2
+ 𝜆𝛼 ∑ 𝛽𝑗 + 𝜆 1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1  

𝜷�𝐸𝐿𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
1
2𝑛

  𝒓𝑓−𝑋𝑗 𝛽𝑗
2

+ 𝜆𝛼∑ 𝛽𝑗 + 𝜆 1−𝛼
2
∑ 𝛽𝑗

2𝑝
𝑗=1

𝑝
𝑗=1

𝜕𝜷�𝐸𝐿𝑁

𝜕𝛽𝑗
=

1
𝑛  𝑋𝑗𝑇  𝒓𝑓−𝑋𝑗 𝛽̂𝑗

2
+ 𝜆𝛼 𝑠𝑖𝑔𝑛  𝛽̂𝑗 + 𝜆(1 −𝛼) 𝛽̂𝑗

𝛽̂𝑗 = 𝑆
1
𝑛𝑋𝑗

𝑇𝑟𝑓 ,  𝜆 𝛼  /(1 + 𝜆 1−𝛼 )				    [14]                                             
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where 
1
𝑛𝑿𝑗

𝑇𝑟𝑓

𝛽̂𝑗 and  𝑆   1
𝑛
𝑿𝑗𝑇𝑟𝑓 ,𝜆 𝛼 

 is the simple OLS method to estimate the coefficient 𝜷� (i.e., 𝛽𝑗: 𝑗 = 0,1,2, … ,𝑝)j and

1
𝑛𝑿𝑗

𝑇𝑟𝑓

𝛽̂𝑗 and  𝑆   1
𝑛
𝑿𝑗𝑇𝑟𝑓 ,𝜆 𝛼 

is the soft-thresholding function with the value (Equation 15):

𝑀𝑆𝐸 𝜷� = 𝐸 𝜷� −𝜷

                   = 𝐸 𝜷� −𝑬 𝜷�
𝟐

+ 𝑬 𝜷� −𝜷
2
 

                                                             = 𝑣𝑎𝑟 𝜷� +𝐵𝑖𝑎𝑠2 𝜷�,𝜷                    

	 [15] 

The mean square error (MSE) is a measure of the average squared difference between 
the actual and estimated values as Equation 16:  

𝑀𝑆𝐸 𝜷� = 𝐸 𝜷� −𝜷

                   = 𝐸 𝜷� −𝑬 𝜷�
𝟐

+ 𝑬 𝜷� −𝜷
2
 

                                                             = 𝑣𝑎𝑟 𝜷� +𝐵𝑖𝑎𝑠2 𝜷�,𝜷                    

					     [16] 

The MSE is written as the sum of the variance and bias squared terms of the estimator
𝜷� (i.e., 𝛽𝑗: 𝑗 = 0,1,2, … ,𝑝) as Equation 17:                            

𝑀𝑆𝐸 𝜷� = 𝐸 𝜷� −𝜷

                   = 𝐸 𝜷� −𝑬 𝜷�
𝟐

+ 𝑬 𝜷� −𝜷
2
 

                                                             = 𝑣𝑎𝑟 𝜷� +𝐵𝑖𝑎𝑠2 𝜷�,𝜷                    

𝑀𝑆𝐸 𝜷� = 𝐸 𝜷� −𝜷

                   = 𝐸 𝜷� −𝑬 𝜷�
𝟐

+ 𝑬 𝜷� −𝜷
2
 

                                                             = 𝑣𝑎𝑟 𝜷� +𝐵𝑖𝑎𝑠2 𝜷�,𝜷                    

𝑀𝑆𝐸 𝜷� = 𝐸 𝜷� −𝜷

                   = 𝐸 𝜷� −𝑬 𝜷�
𝟐

+ 𝑬 𝜷� −𝜷
2
 

                                                             = 𝑣𝑎𝑟 𝜷� +𝐵𝑖𝑎𝑠2 𝜷�,𝜷                    			   [17]

where the bias and variance have a trade-off, and thus, the ELN regression aims to achieve 
the best estimator through an optimal balance between the variance and bias terms by 
increasing the bias value, leading to a decrease in the variance value to investigate the 
minimum MSE.

Proposed EMD-ELN Method

The proposed EMD-ELN method is intended to understand the significance of the 
decomposition components, { 𝐶𝑗𝑘 𝑡 ;𝑘 = 1,2, … ,𝐾 and 𝑟𝑗(𝑡) 𝑗 = 1,2, … 𝑝, that have the 
most effect on response variable y in two case studies. In the first case, the components are 
free from multicollinearity while in the second case, high multicollinearity can be observed 
among the components. The EMD-ELN method is summarized in Algorithm 2 and Figure 2.
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Algorithm 2: EMD-ELN algorithm
Input:  𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

.
Output: 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

.
(1)	 Decompose 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

 via EMD separately. 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

 

(2)	 Use all 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

 and 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

 components as new predictor variables to 
explain 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

.      

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

(3)	 Check the multicollinearity by using the variance inflation factor 
(VIF) test,

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

,

where 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

 is the coefficient of determination.
(4)	 Select the variables via the ELN:

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0

  

 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0(5)	 Build the final model by 

 𝑥𝑗 𝑡  and 𝑦(𝑡);  𝑗 = 1,2, … , 𝑝, and 𝑦(𝑡)

𝛽𝑗𝑘 ≠ 0;  𝑗 = 1,2, . . 𝑝 and 𝑘 = 1,2, . .𝐾,𝐾+ 1

 𝑥𝑗 𝑡

 𝑥𝑗 𝑡 = �𝐶𝑗𝑘(𝑡)
𝐾

𝑘=1

+  𝑟𝑗(𝑡)

𝐶𝑗𝑘 𝑡  𝑎𝑛𝑑 𝑟𝑗(𝑡)

𝑦 𝑡

𝑦 𝑡 = � �𝐶𝑗𝑘(t)𝛽𝑗𝑘

𝐾

𝑘=1

+ 𝑟𝑗 𝑡 𝛽𝑗𝐾+1 + 𝜀(𝑡)
𝑝

𝑗=1

𝑉𝐼𝐹𝑗𝑘 =
1

1− 𝑅𝑗𝑘2  

𝑅𝑗𝑘2

𝑃𝛼 𝜷 = 𝛼 � � 𝛽𝑗𝑘

𝐾+1

𝑘=1

𝑝

𝑗=1

+
1−𝛼

2 � � 𝛽𝑗𝑘
2

𝐾+1

𝑘=1

𝑝

𝑗=1

𝛽𝑗𝑘 ≠ 0.

APPLICATION

We explain the numerical experiments comprehensively using the sine waves function and 
the daily close stock market data to apply the EMD-ELN method and discuss the results.

Numerical Experiments

This study uses the sine function to demonstrate the use of the EMD-ELN method. The 
datasets are generated for the predictors and response signals with the length of a sample 
size 𝑛 = 250 and time-domain between zero and seven (0 ≤ d ≤ 7) in the first experiment 
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(Experiment 1) and 𝑛 = 450 and (0 ≤ 𝑑 ≤ 7)9) second experiment (Experiment 2). The 
formulas of the function test in two experiments of the response and predictor variables 
are as follows.

Exeperiment 1:
𝑥 𝑑 = 0.5𝑑 + sin 𝜋𝑑 + sin 2𝜋𝑑 + sin 6𝜋𝑑

𝑦 𝑑 = sin 2𝜋𝑑 + sin 6𝜋𝑑 + sin 8𝜋𝑑 + + sin 13𝜋𝑑

Experiment 2:
𝑥1 𝑑 = 0.8𝑑 + sin 0.3𝜋𝑑 + sin 2𝜋𝑑 + sin 7𝜋𝑑 + sin 9𝜋𝑑

𝑥2 𝑑 = 0.4𝑑 + sin 0.2𝜋𝑑 + sin 6𝜋𝑑 + sin 7𝜋𝑑 + sin 9𝜋𝑑

𝑥3 𝑑 = 0.6𝑑 + sin 𝜋𝑑 + sin 7𝜋𝑑 + sin 9𝜋𝑑

𝑦(𝑑) = 0.5𝑑 + sin 𝜋𝑑 + sin 2𝜋𝑑 + sin 6𝜋𝑑

RESULTS AND DISCUSSION

Table 1 presents the number of decomposition components extracted through the EMD 
algorithm and the multicollinearity test among the components in two experiments. In the 
first experiment, the original x ( t )  had three IMFs and one residual component. The VIF 
test also showed that the components were free from multicollinearity where all values were 
less than 10. In the second experiment, the results of the EMD algorithm for the original 
multiple predictors x 1 ( t ) , x 2 ( t ), and x 3 ( t )  were as follows: each one of the x 1 ( t ) and 
x 2 ( t ) has four IMFs and one residual component, while the x 3 ( t ) has five IMFs and one 
residual component. Based on the VIF test values for this experiment, several decomposition 

Figure 2. EMD-ELN modeling process
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Table 1 
Output of EMD and VIF tests

Expriment 1

EMD
Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

VIF
Experiment 2

EMD

Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

Experiment 1

EMD 𝐶1 𝑡 𝐶2 𝑡 𝐶3 𝑡 𝑟 𝑡

VIF 1.00 1.01 1.00 1.01
Experiment 2

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡

VIF 2414 25.27 6.71 1.36 325.54 3.59 1.34 7.54

EMD 𝐶24 𝑡  𝑟2 𝑡 𝐶31 𝑡 𝐶32 𝑡 𝐶33 𝑡 𝐶34 𝑡 𝐶35 𝑡  𝑟3 𝑡

VIF 42.33 7.61 2380 24.28 1.47 38.75 3.38 384.26

VIF
EMD
VIF

Table 2
Comparison of different methods for numerical experiments

Method Parameter(s) RSS Bias2 Var Variable Selection
Experiment 1

EMD-OLS λ = 0 42.91298       5.89e-35    0.566789   All
EMD-RR λ = 0.05401, ∝ = 0 42.43922   1.05e-36    0.512713   All
EMD-LASSO λ = 0.05405, ∝ = 1 41.25816   2.59e-36    0.442239   C 1, C 2

EMD-ELN λ = 0.06434, ∝ = 0.84 41.24562   4.81e-35 0.432979 C 1, C 2

Experiment 2
EMD-OLS λ = 0 124.2361 4.67 e-3 0.136539 All
EMD-RR λ = 0.083389, ∝ = 0 118.4152 3.97 e-5 0.084286 All
EMD-LASSO λ = 0.039912, ∝ = 1 115.2839 3.48 e-4 0.048209 C 21, C 32 , C 33

EMD-ELN λ = 0.276647, ∝ = 0.12 114.9694 8.83 e-4 0.033481 C 12, C 14, C 21, C 32 , C 33

components had values of more than 10, indicating that high multicollinearity existed 
among the decomposition components in the second experiment. 

Table 2 illustrates the results of the comparison of the methods that depended on the 
values of lambda, which were selected by 10-fold CV. In the two experiments, the results 
showed that EMD-ELN had the smallest values of 𝑅𝑆𝑆. The penalty value increase appeared 
to cause a negligible increase in the bias, which contributed to the decrease in the variance 
of the two experiments. This result indicates that the optimal balance between variance and 
bias was achieved. For the variable selection in the first experiment, which was free from 
multicollinearity, the END-ELN method similar to END-LASSO method selected variables 
C 1  and C 2  and had the most effect on the response variable. In the second experiment, the 
EMD-ELN was the best method for selecting the decomposition components that exhibited 
a high correlation and included C 12, C 14, C 21, C 32, and C 33  in the final model, whereas 
the EMD-LASSO selected C 21, C 32, and C 33. Hence, the EMD-LASSO failed to select 
any decomposition components from the predictor x 1 ( t ) because of multicollinearity, 
while the EMD-ELN selected, two components C 12 and C 14, from the x 1 ( t ).
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Figure 3 shows the graphs of the decomposition components selected using the EMD-
ELN method and the response variable in the two experiments. In each graph, the solid 
black line represents the response variable and other lines are the selected components. 
The response variable in the first experiment was stationary while the second experiment 
had modifications (i.e. transformed to be stationary). We showed similarities and matching 
lines between the components selected and the response variables for the two experiments.

Table 3 illustrates that the results of the compared methods with noise structure errors 
had zero mean and unity variance 𝜀~𝑖𝑖𝑑 𝑁 0,1  added to the predictor variables in the first 
and second experiments with 2000 replications modeled. The value of the tuning parameter 
was chosen automatically using a 10-fold CV. The results show that EMD-ELN had the 
smallest error value in terms of RSS and achieved the optimal balance between variance 
and bias in two experiments.

Figure 3. Variable selection and response variable: (a) experiment 1; and (b) experiment 2

(a) (b)

Table 3
Comparison of different methods for simulation

Method RSS Bias2 Var
Experiment 1

EMD-OLS 52.03 4.99e-33 0.353
EMD-RR 51.77 9.06e-34 0.273
EMD-LASSO 51.51 8.36e-34 0.264
EMD-ELN 50.93 8.08e-34 0.263

Experiment 2
EMD-OLS 131.22 0.010120 0.164156
EMD-RR 129.58 0.009838 0.060295
EMD-LASSO 128.40 0.009749 0.066662
EMD-ELN 126.71 0.009629 0.076161
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Stock Market 

In this study, the daily close stock market from March 26, 2010 to September 25, 2017 for 
three countries, namely, Japan (JAP), China (CH), and Singapore (SNG), were employed 
to evaluate the performance of the proposed EMD-ELN and traditional methods. All 
datasets were collected from the Yahoo finance database (https://finance.yahoo.com/). In 
this application, the response variable was the daily close stock market of SNG, while the 
predictor variables were the daily close stock markets of JAP and CH. Each dataset was 
divided into two parts: 70% for training (from March 26, 2010 until June 24, 2015) and 
the remaining 30% for testing.

Stock Market Results and Discussion

Figure 4 shows a graphical view of the original close daily stock market signals for CH, 
JAP, and SNG. Figure 4 shows that the signals did not show any constant value over time 
or straight lines, thereby indicating that the signals were non-stationary and nonlinear.

Figure 5 shows the plots of the decomposing components extracted by the EMD 
algorithm from the original predictor variables CH and JAP. The CH signal was decomposed 
into nine IMFs {𝐶11 𝑡 ,𝐶12 𝑡 , 𝐶13 𝑡 ,𝐶14 𝑡 , 𝐶15 𝑡 ,𝐶16 𝑡 ,𝐶17 𝑡 , 𝐶18 𝑡 ,𝐶19 𝑡 } 

{𝐶21 𝑡 ,𝐶22 𝑡 ,𝐶23 𝑡 ,𝐶24 𝑡 ,𝐶25 𝑡 ,𝐶26 𝑡 ,𝐶27 𝑡 } 

 and 
one residual r1(t) component, while the JAP signal was decomposed into seven IMFs 
{𝐶11 𝑡 ,𝐶12 𝑡 , 𝐶13 𝑡 ,𝐶14 𝑡 , 𝐶15 𝑡 ,𝐶16 𝑡 ,𝐶17 𝑡 , 𝐶18 𝑡 ,𝐶19 𝑡 } 

{𝐶21 𝑡 ,𝐶22 𝑡 ,𝐶23 𝑡 ,𝐶24 𝑡 ,𝐶25 𝑡 ,𝐶26 𝑡 ,𝐶27 𝑡 }  and one residual r2(t) component 
with different characteristics (i.e. frequency and wavelength). 

Figure 4. Plots of original signals 
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Table 4 illustrates the values of the VIF test of multicollinearity among the 
decomposition components. The results of the VIF test shows that several decomposition 
components obtained values larger than 10 (𝐶19 𝑡 ,  𝑟1 𝑡 , and  𝑟2 𝑡 > 10), which 
indicates that high multicollinearity exists among the decomposition components. 

Table 5 illustrates the results of the compared methods, which depend on the 
values of 

𝛼

0 ≤ 𝛼 ≤ 1

𝜆   

𝜆 > 0

𝜆 = 0

 𝛼 = 0
𝛼 = 1

 and were selected by 10-fold CV. The results show that the EMD-ELN 
outperformed its competitors. It had the smallest 𝑅𝑆𝑆 (𝑅𝑆𝑆= 486.5276 at  that resulted 
in an optimal balance between variance and bias-square. For the variable selection, the 
EMD-ELN was the best method for selecting decomposition components that exhibit 
high multicollinearity. These chosen components included the eleven components in the 

(a) (b)
Figure 5. Decomposition of: (a) CH; and (b) JAP signals via EMD

Table 4
VIF test

EMDEMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡 𝐶15 𝑡 𝐶16 𝑡 𝐶17 𝑡 𝐶18 𝑡 𝐶19 𝑡
VIF 1.04 1.02 1.05 1.23 1.12 1.52 1.52 4.19 172.0

EMD  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡 𝐶24 𝑡 𝐶25 𝑡 𝐶26 𝑡 𝐶27 𝑡  𝑟2 𝑡
VIF 326.4 1.03 1.02 1.01 1.09 1.14 1.13 2.14 138.5

EMD 𝐶11 𝑡 𝐶12 𝑡 𝐶13 𝑡 𝐶14 𝑡 𝐶15 𝑡 𝐶16 𝑡 𝐶17 𝑡 𝐶18 𝑡 𝐶19 𝑡
VIF 1.04 1.02 1.05 1.23 1.12 1.52 1.52 4.19 172.0

EMD  𝑟1 𝑡 𝐶21 𝑡 𝐶22 𝑡 𝐶23 𝑡 𝐶24 𝑡 𝐶25 𝑡 𝐶26 𝑡 𝐶27 𝑡  𝑟2 𝑡
VIF 326.4 1.03 1.02 1.01 1.09 1.14 1.13 2.14 138.5

VIF
EMD
VIF
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final model that had different signs on the response variable. The EMD-LASSO failed to 
select any decomposition components with high correlation, while the EMD-ELN could 
remove (like C19 ) or chose the components that exhibited high correlation (like r1 and r2  
components) in the final model.

Table 5
Comparison of different methods for stock market application

Method Parameter(s) RSS Bias2 Var Variable Selection
EMD-OLS λ = 0 759.3457 2.168e-29 0.5784  All
EMD-RR λ = 0.33320, ∝ = 0 487.0063 2.005e-32 0.0424  All
EMD-LASSO λ = 0.04205, ∝ = 1 489.6050 1.632e-34 0.0382  {C 11( t) ,  C 14( t) ,  C 21( t) , 

C 11( t)}
EMD-ELN λ = 0.43233, ∝ = 0.02 486.5276 5.545e-33 0.0320 {C 11( t) ,  C 12( t) ,  C 24( t) , 

C 18( t) ,  r 1( t) ,  C 21( t) , 
C 22( t) ,  C 23( t) ,  C 26( t) , 

C 27( t) ,  r 2( t)}

CONCLUSION 

In this paper, we developed a hybrid EMD-ELN method using non-stationary and nonlinear 
predictor variables. The proposed method can be used to determine which of decomposition 
components through the EMD of the original non-stationary and nonlinear predictors have 
the most effect on the response variable.  

The results of the numerical experiments and stock market applications prove that the 
EMD-ELN method is highly capable of identifying the decomposition components with 
the most effect on the response variable in the presence or absence of multicollinearity 
and building a model free from multicollinearity. The proposed EMD-ELN also achieves 
a balance between bias and variance.
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